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Extinction of diffusion flames with nonunity Lewis numbers
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Abstract. Quasisteady extinction of diffusion flames with nonunity Lewis numbers is analyzed for counterflow
diffusion flames in the diffusion-flame regime of activation-energy asymptotics. Particular attention is placed on
an excess or deficiency of the total energy in the reaction region, associated with leakage of the reactants. If the
Lewis number is less than unity, there is diminished diffusive loss of thermal energy that leads to an increase of the
total energy in the reaction zone as reactants penetrate. The resulting excess total energy strengthens the chemical
reaction, so that the flame becomes more robust and resistant to extinction. On the other hand, flames with Lewis
numbers greater than unity are found to extinguish more easily. An extinction criterion is provided that is valid for
nonunity Lewis numbers.
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1. Introduction

Analysis of diffusion-flame structures has been greatly facilitated by the assumption of infinite-
rate chemistry [1]. Under this assumption, the chemistry is reduced to a set of algebraic
equations describing chemical equilibrium. In particular, if an overall one-step irreversible
reaction is adopted, the infinite-rate chemistry corresponds to the Burke-Schumann limit, in
which the fuel and oxidizer streams are separated by an infinitely thin reaction sheet located
where stoichiometric consumption of fuel and oxidizer is achieved. The Burke-Schumann
limit has met with some success in providing satisfactory first approximations for flame
temperature, reaction-zone location, fuel consumption and other quantities that are mainly
controlled by transport processes. However, the Burke-Schumann limit is unable to predict
phenomena associated with finite-rate chemistry, such as pollutant production, leakage of
reactants and, in particular, extinction. Prediction of these phenomena requires integration of
a set of partial differential equations with highly nonlinear chemical-reaction terms.

For simplified chemical models employing an overall one-step irreversible Arrhenius-
type reaction rate with a large Zel’dovich number (a measure of the ratio of the activation
energy to the thermal energy), activation-energy asymptotics (AEA) has been developed,
enabling integration of the reaction rate over the thin reaction zone, thinner by an order of
magnitude than the thick transport zones. For diffusion flames, Liñán [2] derived a standard
AEA procedure to analyze diffusion-flame structures, providing an extinction criterion readily
used to find an extinction condition if only the Burke-Schumann solution is known. The AEA
extinction criterion was later applied to find overall activation energies and frequency factors
by a comparison with the results of the extinction experiments [3, 4]. The AEA procedure
still remains one of the methods favored to construct flamelet data used in turbulent diffusion-
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102 J. S. Kim and F. A. Williams

flame models [5, 6]. Although the extinction criterion proposed by Liñán was derived only for
flames with Lewis numbers of unity, this extinction criterion often has been applied to flames
with nonunity Lewis number without modifications to take into account all effects coming
from nonunity Lewis number [7, 8]. The full analysis valid for nonunity Lewis numbers still
has not been published. It is the purpose of the present paper to explain these differences by
demonstrating an AEA analysis that is generalized for nonunity Lewis numbers.

For diffusion flames with nonunity Lewis number, the usual conserved scalar [1] does not
exist, so that it is more difficult to decouple the temperature variation from the reaction term in
species conservation. Although generalized coupling functions are defined by Liñán [9], their
distributions are still dependent on reactant leakages caused by finite-rate chemistry. Among
the generalized coupling functions, particular attention needs to be paid to the total enthalpy,
which can be constructed by the addition of a suitable combination of the species-conservation
equations to the thermal-energy-conservation equation to eliminate the reaction term. If the
Lewis number is unity, the total enthalpy is a conserved scalar, in that its profile does not
vary, even in the presence of finite-rate chemistry. However, if the Lewis number departs
from unity, as finite-rate chemistry causes the reactants to leak through the reaction sheet, the
total enthalpy may decrease or increase because of the unbalance of diffusion for chemical
and thermal energies. Although the variation of the total enthalpy remains small (typically of
the order of the reciprocal of the Zel’dovich number), each small variations are capable of
leading to a change of the reaction rate by a relative amount of order unity because of the large
Zel’dovich number. In the previous AEA analyses, that were aimed at describing extinction of
diffusion flames with nonunity Lewis number, the effects of the total-enthalpy variation with
reactant leakage were not properly taken into account, so that inaccuracies of order unity can
arise in their extinction results. In addition, some of the oscillatory and cellular structures of
near-extinction flames are found to result from the variation of the total enthalpy [10, 11, 12].

Since we cannot cover all the phenomena associated with nonunity Lewis number, our scope
in this paper will be restricted to the phenomenon of diffusion-flame extinction. Oscillatory
and cellular instabilities of diffusion flames will be discussed in forthcoming publications. The
extinction analysis will mostly be parallel to that of Liñán. Therefore, emphasis will be placed
on how to include the effects of the total-enthalpy variation and what their consequences
might be. Each algebraic step of the analysis will be shown in detail to provide readers with a
pedagogic background. In addition, for the sake of clarity, many simplifying assumptions will
be made to reduce clutter in the equations. For example, Lewis numbers for both reactants will
be taken as constant and equal. Further calculations therefore need to be completed before the
full range of applications can be addressed.

2. Conservation equations and boundary conditions

Since our present purpose is a demonstration of an extinction analysis for diffusion flames
with nonunity Lewis numbers, instead of accurately predicting flame structures in general
situations, a number of assumptions are introduced for simplicity. The flame configuration
employed in this analysis is a counterflow diffusion flame as illustrated in Figure 1. The
density in the flow is assumed to be constant, because variable density is not an essential
generalization to illustrate the elements of the analysis. All molecular properties are also
assumes to be constant. To simplify the molecular diffusion mechanism, the two reactants,
fuel and oxidizer, are assumed to be present in small amounts in an abundance of inert gas. In
such a case, the diffusion coefficients of fuel and oxidizer are their binary diffusion coefficients
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Extinction of diffusion flames 103

Figure 1. Schematic diagram of a counterflow diffusion flame.

with respect to the inert, and the thermal diffusion coefficient D�

T
of the system is given by

that of the inert. The superscript � denotes dimensional quantities. In addition, the diffusion
coefficients for both fuel and oxidizer are assumed to be equal, so that the mass diffusion
coefficient is simply denoted byD�. Then the Lewis number, denoted by L, is the ratio of D�

T

to D� and also is constant.
In terms of the heat release per unit mass of the oxidizer consumed, denoted by Q�, and

the specific heat at constant pressure, denoted by c�p, the nondimensional temperature T is
defined as

T � �Lc�p(T
� � T ��1)

Q�Y �
O�1

=
1
q

 
T �

T ��1
� 1

!
; (1)

where T � is the unscaled temperature, Y �

O�1
the oxidizer mass fraction at the oxidizer

boundary, T ��1 the temperature at that boundary, � the stoichiometric mass ratio of oxidizer
to fuel, and q the nondimensional heat-release parameter defined as q � Q�Y �

O�1
=�Lc�pT

�
�1.

The subscripts 1 and �1 refer to the fuel and oxidizer boundaries, respectively. The scaled
fuel mass fraction YF and scaled oxidizer mass fraction YO are also defined as

YF = �Y �

F =Y
�

O�1; YO = Y �

O=Y
�

O�1: (2)

Near the line of symmetry of axisymmetric counterflows, the scalar variables, such as
YF ; YO and T , are independent of the transverse coordinate, so that only the normal coordinate
needs to be considered. In terms of D�

T
and the rate of strain a�, the nondimensional normal

distance from the stagnation plane is defined as

y � y�=(D�

T =a
�)1=2; (3)

where (D�

T
=a�)1=2 is the characteristic thickness of the mixing layer. For chemistry, we

consider an overall irreversible one-step Arrhenius reaction with reaction orders of unity for
both fuel and oxidizer. Then the rate of fuel consumption per unit mass is given by

w� = B�Y �

OY
�

F exp(�E�=R�T �) (4)
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104 J. S. Kim and F. A. Williams

where B� is a pre-exponential factor with units of reiprocal time, E� the overall activation
energy, and R� the universal gas constant.

Under these assumptions, the conservation equations for species and energy can be written
as

d2YF

dy2 + 2Ly
dYF
dy

= DaYOYF exp

 
� E�

R�T ��1

1
1 + qT

!
; (5)

d2Z

dy2 + 2Ly
dZ
dy

= 0; (6)

d2H

dy2 + 2y
dH
dy

= (1� L)y

�
dYF
dy

+
dYO
dy

�
; (7)

where Da is the Damköhler number defined as Da � B�LY �

O�1
=a�. In Equations (6) and

(7), the modified mixture fraction Z and the modified total enthalpy H are [9]

Z � (YF � YO + 1)=(1 +AF ); H � T + (YO + YF )=2; (8)

where an equivalence ratio AF is given byAF � �Y �
F1

=Y �
O�1

. It is worthy of note that Z is
a conserved scalar, because both Lewis numbers for fuel and oxidizer are equal. If two Lewis
numbers are unequal, the equation for Z will have an inhomogeneous term, which will cause
the distribution of Z to vary with leakage. With a known distribution of YF ; Z andH describe
the corresponding distributions of YO and T , respectively. Use of the coupling functions Z
andH , instead of YO and T , enables us to determine the reaction-sheet location and the flame
temperature without using jump conditions.

The applicable boundary conditions for Equations (5)–(7) are

YF ! AF ; Z ! 1; H ! H1 = T1 +AF =2 as y !1
YF ! 0; Z ! 0; H ! 1=2 as y ! �1

)
: (9)

Since the Arrhenius reaction is controlled mainly by the temperature distribution, it does not
distinguish chemical differences between the fuel and oxidizer. Systems with AF > 1 are
symmetric to systems with AF 6 1 in the sense that they can be converted into each other by
exchanging the fuel and oxidizer. Here we therefore consider only cases with AF > 1.

3. Burke-Schumann solution

The first approximation to the diffusion-flame structure is the Burke-Schumann solution, which
arises from infinite-rate chemistry, i.e. Da ! 1. Under this limit, Equation (5) requires that
YOYF = 0, that is, the fuel and oxidizer streams are separated by a reaction sheet.

As a first solution to the conservation equations, the modified mixture fraction is found to
be

�Z = 1� 1
2 erfc(

p
Ly); (10)

where ‘erfc’ is the complementary error function [13] and the ‘bar’ denotes the Burke-
Schumann solution. Since �YF = �YO = 0 at the reaction sheet, �Zs = 1=(1 + AF ) and the
reaction-sheet location ys is found to be

ys = L�
1
2 erfc�1(2AF=(1 +AF )); (11)
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Extinction of diffusion flames 105

where ‘erfc�1’ is the inverse complementary error function, and the subscript s denotes
quantities evaluated at the reaction sheet. The distribution of �YF is obtained from (5), and the
corresponding distribution of �YO is subsequently obtained by substituting �YF and �Z in the
definition of Z in (8). The profiles are then given by

�YF = [AF � 1
2 (1 +AF ) erfc(

p
Ly)]u(y � ys);

�YO = [1
2 (1 +AF ) erfc(

p
Ly)�AF ]u(ys � y);

(12)

where u(x) is the unit step function; u(x) = 1 for x > 0 and u(x) for x < 0.
Integrating (7), we find that the distribution of �H is given by

�H = 1
4 erfc(y) +

�
AF

4
+
T1

2

�
[2� erfc(y)]�

Z
1

�1

h(�)G(�; y) d�; (13)

where the Green’s function G(�; y) is

G(�; y) =

( 1
4

p
� exp(�2)[2� erfc(�)] erfc(y) for y > �

1
4

p
� exp(�2)erfc(�)[2� erfc(y)] for y < �

(14)

and h(y) is the inhomogeneous term of Equation (7), given by

h(y) = (1� L)y

�
dYF
dy

+
dYO
dy

�

= (1 +AF )(1� L)
q
L=�y exp(�Ly2) sgn(y � ys): (15)

As a part of the solution for �H(y); �Hs is of particular interest. Since �YF = �YO = 0 at
y = ys; �Hs corresponds to the nondimensional Burke-Schumann flame temperature and is
given by

�Hs =
1
4 (1 +AF )L

1=2 exp[(1� L)y2
s] erfc(ys)[2� erfc(ys)] + 1

2T1[2� erfc(ys)]: (16)

In addition, the gradients of �H and �Z at the reaction sheet are

�H 0
s = �1

2(1 +AF )(L=�)
1=2 exp(�Ly2

s)[1� erfc(ys)] + T1�
�1=2 exp(�y2

s);

�Z 0s =
p
L=� exp(�Ly2

s);
(17)

which will be used to scale the inner-layer analysis.

4. AEA analysis

Once the rate of the chemical reaction becomes finite, i.e., the Damköhler number Da becomes
finite, the reactants begin to leak through the reaction sheet. Taking the Zel’dovich number �,
defined as

� � E�

R�T ��1

q �Hs

(1 + q �Hs)2 ; (18)
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106 J. S. Kim and F. A. Williams

to be the large expansion parameter, we are concerned with a limit in which the magnitude
of the reactant leakage is of order ��1. This distinguished limit defines the diffusion-flame
regime or near-equilibrium regime [2]. Here we pose the problem of finding the value of Da
corresponding to a specified value of fuel or oxidizer leakage of order ��1.

4.1. OUTER CONVECTIVE-DIFFUSIVE LAYER ANALYSIS

In this layer, the scalar variables are perturbed from their Burke-Schumann distributions in
the form

Y out
i

= �Yi + ��1 �HsŶi + � � �
Zout = �Z + ��1 �HsẐ + � � �
Hout = �H + ��1 �HsĤ + � � �

9>>>=
>>>;

for i = O;F: (19)

If YF ; Z andH are replaced by ŶF ; Ẑ and Ĥ , the conservation equations for ŶF ; Ẑ and Ĥ are
identical to (5)–(7) with a vanishing reaction term. The applicable boundary conditions are
homogenous at both boundaries.

The solution for Ẑ is found to be identically zero throughout the flow, so that ŶF is equal
to ŶO. Then, ŶF and ŶO may be written as

ŶF = ŶO =

8<
:
Ŷ + 1

2(1 +AF )A
�1
F

erfc(
p
Ly) for y > ys

Ŷ � 1
2(1 +AF )[2� erfc(

p
Ly)] for y < ys

; (20)

where Ŷ � = ŶF (y
�
s ) = ŶO(y

�
s ). Here Ŷ + represents the oxidizer leakage, while Ŷ � does

the fuel leakage. The leakages Ŷ � are still unknown and will be determined later by matching
with the inner-layer solution.

In a manner similar to how �Hs was obtained, Ĥs is found in terms of Ŷ � to be

Ĥs = C�s Ŷ
� + C+s Ŷ

+ (21)

where the constant C�s are

C�s = f1
2 + [(1� L)ys

1
2

p
� � (1 +AF )

1
4

p
L exp(�Ly2

s)]

exp(y2
s)[2� erfc(ys)]g erfc(ys);

C+s = f1
2 � [(1� L)ys

1
2

p
� +

1 +AF

AF

1
4

p
L exp(�Ly2

s)]

exp(y2
s) erfc(ys)g[2� erfc(ys)]: (22)

Here Ĥs may be called the excess enthalpy, since it measures an excess or deficiency of the
total enthalpy at the reaction sheet from �Hs. As the reactants leak through the reaction sheet,
the chemical enthalpy in the reaction zone increases from that of the Burke-Schumann limit,
while the thermal enthalpy decreases. Depending on whether the Lewis number L is less than
or greater than unity, an excess or deficiency in the total enthalpy may occur. If the Lewis
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Figure 2. Variation of C�
s

with AF for various values of L.

number is unity, the increase of the chemical energy is exactly balanced by a decrease of the
thermal energy, so that Ĥs = 0. However, if the Lewis number is less than unity, then the loss
of the thermal enthalpy is smaller than the gain of the chemical energy, because of a weaker
heat loss toward the colder boundaries, contributed by the effect of smaller thermal diffusivity
compared with mass diffusivity. Therefore, the excess enthalpy Ĥs becomes positive for
L < 1, while Ĥs is negative for L > 1. It is the excess enthalpy Ĥs that causes the extinction
characteristics of flames with nonunity Lewis numbers to become different from those of
flames with unity Lewis number.

Figure 2 shows variation of C�
S

with AF and L obtained from (11) and (22). The corre-
sponding value of C+s can also be found from Figure 2 because C+s (AF ) = C�s (1=AF ). If
the ratio AF is unity, then C�s = (1 �

p
L)=2. In addition, for AF ! 1, the asymptotic

behaviors of C�s are found to be C�s ! 0 and C+s ! 1�L. On the other hand, C�s ! 1�L
and C+s ! 0 as AF ! 0.

In real combustion systems, Lewis numbers for fuel and oxidizer are seldom equal or
constant, so that evaluation of the excess enthalpy Ĥs, i.e. evaluation of the constants C�s ,
becomes algebraically more complicated and tedious. Then it is useful to calculate numerically
the values of C�s . To do so, we first set Ŷ �

F
= 1 and Ŷ +

F
= 0, and then calculate the profile of

ŶF . The differential equation for ŶF is identical to (5) with the homogeneous right-hand side,
L = LF and YF being replaced by ŶF . The profile of ŶO can be found from the subsequent
numerical integration of Ẑ and the coupling relation in Equation (8). However, it must be
noted that, if LF 6= LO, the differential equation for Ẑ is no longer homogeneous, i.e. there
exists an additional transient-convective term of ŶF in the right-hand side of (6), so that Ẑ is
no longer identically zero. Finally, numerical integration for Ĥ , the differential equation of
which is given in (7) with ‘hat’ placed on all state variables and ŶF and ŶO separately taking
L = LF and L = LO, yields the profile of Ĥ . Then the value of Ĥs corresponds to the value
of C�s . In a manner similar to how we obtained C�s , we can find the value of C+s by setting
Ŷ �

F
= 0 and Ŷ +

F
= 1. Similarily, Ẑs can be expressed as a linear combination of Ŷ �

F
.
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108 J. S. Kim and F. A. Williams

4.2. INNER REACTIVE-DIFFUSIVE LAYER ANALYSIS

In the reactive-diffusive layer, the scalar variables are perturbed from their values of the
Burke-Schumann solution at the reaction sheet. Since �YF = 0 at y = ys, the inner expansion
for YF is given by

Y in
F = ��1 �Hs(�+ �); (23)

where the stretched inner coordinate � is given by

� = A�(y � ys)� �: (24)

The constant factors A and � will be adjusted later to simplify the inner-layer analysis. The
previous solution for the modified mixture fraction Z is valid, even in the reaction zone,
because Z is a coupling function. Then, in terms of the inner variable �; Z is expanded near
y = ys as

Z = (1 +AF )
�1 + ��1[ �Z 0s�=A+ �HsẐs + �Z 0s�=A] + � � � : (25)

Substituting (23) and (25) in the first of Equation (8), we find that the inner expansion of YO
is given by

Y in
O = ��1 �Hs[�+(1�A�1(1+AF )H

�1
s

�Z 0s)��(1+AF )(Ẑs+ �Z 0sA
�1H�1

s �)]+ � � � :(26)

Here we can adjust the two free parameters A and � to obtain a simpler functional form for
Y in
O

. Upon choosing

Y in
O = ��1 �Hs(�� �) (27)

we find the two parameters to be

A = 1
2(1 +AF ) �Z

0

s
�H�1
s ; � = �1

2(1 +AF )Ẑs = 0: (28)

For this analysis, translation of the inner variable from ys by an amount � is not necessary
because Ẑs = 0. However, if Ẑs 6= 0, which occurs for LO 6= LF , such a translation is
essential if we are to fix the coordinate where YF = YO. If this is not done, then the resulting
inner-layer equation may explicitly include the leakage terms, so that the solution of the
inner-layer equation becomes more complicated.

The inner expansion of the temperature is obtained in a manner similar to that employed in
obtaining (27). Expanding H in terms of � and substituting the resulting expansion and (23)
and (27) in the second of Equation (8), we find

T in = �Hs � ��1 �Hs(�+ � � Ĥs); (29)

where  is a heat-loss parameter, defined as

 � � 2 �H 0
s

(1 +AF ) �Z 0s
= 1� erfc(ys)�

2T1
(1 +AF )

1p
L

exp[(L� 1)y2
s]: (30)
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Figure 3. Variation of � with �� for various values of .

If  = 0, then the rates of heat losses are equal at both boundaries, while  = 1(�1)
corresponds to adiabatic conditions at the oxidizer (fuel) boundary.

Substituting (23), (27) and (29) in Equation (5), we obtain the governing equation for the
inner layer as

d2�

d�2 = �(�+ �)(�� �) exp[�(�+ �)];

d�
d�

! �1 as � ! �1;

(31)

where the reduced Damköhler number � is defined as

� � Da exp(Ĥs)
4 �H3

s

(1 +AF )2 �Z 02s �
3 exp

 
� E�

R�T ��1

1
1 + q �Hs

!
: (32)

We obtain the boundary conditions in (31) by matching with the slopes of the Burke-Schumann
solution. The simple boundary conditions in (31) are obtained as a result of an adjustment of
the parameters A and �. The above inner problem was initially derived and solved by Liñán
[2]. For a suitably specified value of �, there exists a unique set of the leakage parameters,
defined by

�� = (�+ �)�1; �+ = (�� �)1: (33)

Figure 3 shows some of the numerical results for � as a function of ��. It is seen from Figure
3 that there is a minimum value of �, below which no solution exists. Although Figure 3 is
for negative , we may apply the figure also for  > 0 by replacing �� with �+, because the
inner problem is symmetric in . In addition, the derivative of � with respect to ��, which
is required to determine the extinction condition, is shown in Figure 4. Appendix A provides
further details on how the curves in Figure 4 are computed.

To complete the analysis, the leakage parameters �� and �+ are matched to the first-order
outer solution to yield

Ŷ � = ��; Ŷ + = �+; (34)
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110 J. S. Kim and F. A. Williams

Figure 4. Variation of�0 with �� for various values of .

which shows that �� and �+ are proportional to the fuel and oxidizer leakages, respectively.
Then, the Damköhler number Da is given as

Da = � exp(�Ĥs)
(1 +AF )

2 �Z 02s �
3

4 �H3
s

exp

 
E�

R�T ��1

1
1 + q �Hs

!
; (35)

where the excess enthalpy Ĥs is

Ĥs = C�s �
� + C+s �

+: (36)

From (35) and (36), the Damköhler number Da can then be expressed as a function of the
fuel-leakage parameter ��.

If the equivalence ratio AF is sufficiently large, which is typical of many diffusion flames,
then the value of  approaches negative unity, as is seen from Equation (30). Under this
circumstance, the larger leakage parameter corresponds to ��, because the reaction becomes
rapidly frozen in the oxidizer stream in which the heat loss is greater. Moreover, the oxidizer
leakage to the fuel boundary vanishes, so that the dominant contribution to the excess enthalpy
is associated with the fuel leakage.

5. Quasisteady extinction condition

To calculate the Damköhler number, first we solve for the Burke-Schumann flame structure
with the boundary conditions and physical parameters. Then, all the terms in (35), except for
� and Ĥs, are determined from the Burke-Schumann solution. For  already determined by
(30), a value of the fuel-leakage parameter �� is chosen to find � and �+ from the numerical
solution of (31). The Damköhler number corresponding to the specified value of �� is found
from (35) and (36). Repeating the same procedure for different values of ��, we find the
variation of the Damköhler number Da as a function of ��. It is essential to guard against
overlooking the factor exp(Ĥs) in Equation (35). Ignoring this excess enthalpy contribution
has led to errors in certain earlier works.

As �� initially increases from zero, Da decreases from infinity, and Da may exhibit a
minimum at a certain value of ��. Any further increase of �� from the minimum condition
leads to an increase of Da. If a value of Da is less than the minimum value of Da, denoted by
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DaE , there exists no steady solution to our problem. Therefore, the minimum condition can
be identified as the quasisteady extinction condition, and DaE is referred to as the extinction
Damköhler number.

The simplest extinction analysis is encountered when L = 1. Since the excess enthalpy
Ĥs is zero for L = 1, the only term in (35) that is dependent on the fuel-leakage parameter
�� is the reduced Damköhler number �. Therefore, the quasisteady extinction condition
corresponds to the minimum of �. An approximation for the minimum �, denoted by �m,
as a function of the heat-loss parameter  is given by Liñán [2] as

�m = e[(1� jj)� (1� jj)2 + 0.26(1� jj)3 + 0.055(1� jj)4]: (37)

Once the Burke-Schumann flame structure is determined, we can easily obtain the extinction
Damköhler number from (35) and (37), even without performing the AEA analysis presented
in the previous section.

However, if Ĥs 6= 0, i.e.L 6= 1, then the �m correlation in Equation (37) is no longer valid
for the quasisteady extinction condition, and variation of the excess enthalpy Ĥs with ��

must be taken into account to calculate the extinction Damköhler number. It is the variation of
Ĥs, which was not properly included in some previous analyses for diffusion-flame extinction
with nonunity Lewis number. Differentiating the logarithm of (35) with respect to ��, we find
that

1
Da

dDa
d��

= �0 � C�s � rC+s ; (38)

where

�0 � 1
�

d�
d��

; r � d�+

d��
: (39)

Then the minimum of Da leads to the quasisteady extinction condition in the form

�0 = C�s + rC+s : (40)

Here it should be kept in mind that the quasisteady extinction condition corresponds to the
minimum of the Damköhler number, not to the minimum of the reduced Damköhler number
given in (37), although other conditions, such as onset of instability, sometimes are related to
the minimum of the reduced Damköhler number [12].

For L < 1, the right-hand side of (40) is always positive, because C�s and r are positive
definite. Then, the quasisteady extinction occurs with�0 > 0, that is, beyond the turning point
of the � � �� curve. As �� increases from its value at the turning point, denoted by ��m,
the reduced Damköhler number � begins to increase. However, Da continues to decrease,
because the additional gain of the excess enthalpy strengthens the chemical reaction, so that
the flame becomes resistant to extinction. The quasisteady extinction can occur only when
the increase of � with increasing �� is large enough to overcome the effect of the excess
enthalpy. As a consequence, diffusion flames with L < 1 extinguish with fuel leakage greater
than ��m. On the other hand, for L > 1, extinction occurs befor the �� �� turning point.

To illustrate the effects of Ĥs on the quasisteady extinction, sample calculations are reported
here. In two previous flame-structure analyses with nonunity Lewis numbers [7, 8], the
excess-enthalpy effects were not taken into account, while the Burke-Schumann solutions
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Figure 5. Variation of ~� with �� for AF = 1; T1 = 0 and L = 0.25; 0.5; 1; 2; 4.

Figure 6. Variation of the ratio R� = ~
�E=�m and ��

E
=��

m
with L for the case of AF = 1 and T1 = 0.

were properly obtained. Since the effects of the reactant leakage appear only in the reduced
Damköhler number � and the excess enthalpy Ĥs, it is more convenient to introduce a
modified reduced Damköhler number ~� as

~� = � exp(�Ĥs): (41)

Then, quasisteady extinction occurs at the minimum of ~�, denoted by ~�E , and the inaccuracy
introduced by neglecting the effects of the excess enthalpy arises only from the difference of
the factor ~�E from �m.

An example is demonstrated for AF = 1 and T1 = 0. We find that ys = 0; C�s =
(1�

p
L)=2;  = 0, and r = 1. The quasisteady extinction condition becomes�0 = 1�

p
L.

Figure 5 shows the variation of ~� with the leakage parameter �� for various values of the
Lewis number. For the case of L = 1, the turning point of ~� occurs at ~�E = �m. As the
Lewis number decreases, turning of ~� � �� curve is delayed to a smaller value of ~�E , i.e.
a larger value of strain rate. For a range of the Lewis number, Figure 6 shows the ratio of
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the value of ~�E to �m, denoted by R� = ~�E=�m, which represents the inaccuracy of the
extinction Damköhler number when the excess enthalpy is neglected. It is seen from Figure 6
that the extinction Damköhler number can be in error by a factor of two. Also seen in Figure
6 is the ratio of the extinction fuel-leakage parameter ��

E
to ��m, showing that ��

E
is much

larger than ��m for L < 1.
In order to use Equation (40), the quasisteady extinction condition has to be found by an

iterative method from numerical results for the functions �(��) and �+(��). However, if
the heat-loss parameter  is close to �1 or 1, the relationship for �(��) can be approxi-
mated in an explicit functional form [14], so that the quasisteady extinction condition can
be readily calculated. For most practical diffusion-flame configurations, the equivalence ratio
AF is extremely large(usually greater than 10), so that  ! �1 turns out to be a realistic
approximation. Under this limit, the oxidizer leakage is negligible, while the fuel-leakage
parameter �� near extinction is much greater than unity. From a distinguished limit in which
( + 1)� 1 and �� � 1, Appendix B derives the asymptotic relation for �(��) as

� = 2(��)�1 exp(m��)[1� 3.3440m+ 1.3440(��)�1]; (42)

where m is a new heat-loss parameter defined as m � (1 � jj)=2 and m > 0(m < 0)
corresponds to subadiabaticity (superadiabaticity) of the flame to the fuel stream. From this
result, the quasisteady extinction condition in (40) can be rewritten as

��
E
=

1 + 1.3440(m� C�s )

m� C�s
; (43)

which gives the two-term approximation to ��
E

. Substituting this approximation in (41) and
(42), we find the two-term approximation to ~� at quasisteady extinction as

~�E = 2e(m� C�s )(1� 2m� 1.3440C�s ) (44)

and the extinction Damköhler number is given by

DaE = ~�E

(1 +AF )
2 �Z 02s �

3

4 �H3
s

exp

 
E�

R�T ��1

1
1 + q �Hs

!
: (45)

Equations (42) through (44) become applicable for  ! 1 when we replace �� and C�s with
�+ and C+s . If a flame is nearly adiabatic, we can obtain the quasisteady extinction condition
from (44) without performing the inner-layer analysis.

The limit ofm! 0 usually occurs when the ratio AF is a large value. As can be seen from
Figure 2,C�s also approaches zero. Under this circumstance, the leading-order approximation
to ~�E becomes ~�E = 2e(m�C�s ). Since �m = 2em, the ratio of the extinction Damköhler
numbers R�, defined in the previous paragraph for Figure 6, becomes R� = (m� C�s )=m.
Therefore, inaccuracy of the extinction Damköhler number depends on how close the factor
C�s is to m.

In (43) and (44), it should be noted that only the positive solution for ��
E

or ~�E is
meaningful. Otherwise, there is no quasisteady extinction condition until the fuel-leakage
parameter �� is increased from zero to infinity. The necessary condition that ~�E is positive
corresponds to m > C�s . Considering the case of L = 1, i.e. C�s = 0, we observe that this
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Figure 7. Variation of ~� with �� for AF = 20; T1 = 0 and L = 0.25; 0.5; 1; 2; 4.

necessary condition says that extinctions are achieved only for subadiabatic flames (m > 0),
which confirms the conventional result [2] that DaE ! 0 as m ! 0. However, for L < 1,
there exists a small range of the positive heat-loss parameterm that does not give any positive
solution for ��

E
. Consequently, for L < 1, quasisteady extinctions cannot be found, unless

the flame is sufficiently subadiabatic at both boundaries. On the other hand, for L > 1,
superdiabatic flames with the parameter m in the range of C�s < m < 0 can be extinguished.

Variation of ~� with �� for L = 0.25; 0.5; 1; 2; 4 is shown in Figure 7 for the case of
T1 = 0 and AF = 20, which is a typical equivalence ratio for hydrocarbon-air flames.
Contrary to the flames in Figures 5 and 6, in which AF = 1 and heat losses are equal at both
boundaries, the flames in this case are slightly subadiabatic. It is apparent from Figure 7 that
the effect of the excess enthalpy is even greater for nearly adiabatic flames. As comparison of
~�E with �m shows, for the case of L = 4, exclusion of the excess-enthalpy effect gives rise
to the inaccuracy of the extinction Damköhler number by a factor of five for AF = 20, while
the inaccuracy for AF = 1 is not greater than a factor of two. In addition, there are no turning
points for L = 0.25 and 0.5. The numerical calculations for these Lewis numbers show that
the values of C�s are greater than the values of m, so that the excess enthalpy effect is strong
enough to overcome the heat losses. Consequently, extinctions do not occur for these flames.
However, it must be kept in mind that the above results, namely that subadiabatic flames with
Lewis numbers less than unity may not be extinguished, need to be carefully interpreted. Since
many assumptions, such as equal Lewis numbers and one-step Arrhenius reaction rate, are
introduced in the model flames, the actual subadiabatic range, in which realistic flames are
not extinguished, will be quite different from that in the model flames in Figure 7.

6. Concluding remarks

In this work, we analyzed quasisteady extinction of diffusion flames with nonunity Lewis
numbers by employing a counterflow diffusion flame as a model. Of particular interest was an
investigation of the effects of excess enthalpy on extinction characteristics of diffusion flames.
From the analysis employing the diffusion-flame regime of activation-energy asymptotics,
the results showed that diffusion flames with Lewis number less than unity are more robust,
because a gain of the excess enthalpy by the weaker diffusive loss of the thermal energy
strengthens the chemical reaction. The resulting extinction Damköhler numbers can differ by
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an amount of order unity from values obtained without consideration of the effects of the
excess enthalpy.

Influences of the excess enthalpy will also appear in extinction analyses with full or
reduced chemical kinetics. Since the asymptotic analyses with reduced chemistry are devel-
oped to obtain quantitatively reasonable extinction conditions, a neglect of the effects of
excess enthalpy may lead to inaccuracies in the asymptotic results. In particular, hydrogen-air
flames near extinction are expected to be most significantly influenced by excess enthalpy
because, besides leakage of hydrogen, leakage of the H radical can be significant throughout
the flow [15]. Unlike hydrogen-air flames, hydrocarbon-air flames may not be affected by
excess enthalpy. The results of rate-ratio asymptotics for methane-air flames [16] show that,
although the heat loss to the fuel stream is smaller, oxygen leaks through the reaction zone,
because of the faster fuel-consumption step compared with the oxidization step. Because the
Lewis number of oxygen is close to unity, the excess enthalpy is not likely to be large enough
to modify the reaction rate significantly for these flames.

Errors in the extinction Damköhler number by a factor of two would be acceptable in some
applications. However, the shift of the quasisteady extinction condition from the minimum
condition of � is found to be important for dynamics of near-extinction flames. A recent
analysis concerning diffusional-thermal instability of diffusion flames [12] has shown that
instability can be initiated between the minimum condition of� and the quasisteady extinction
condition for L < 1. In addition, for L > 1, planar disturbances are suspected to become
unstable even before quasisteady extinction [10, 12], so that the real extinction condition might
correspond to a point at which the planar instability is initiated. Because of these complicating
possibilities, the extinction condition identified by the minimum of the Damköhler number is
strictly termed quasisteady condition in the present analysis. Further studies are necessary to
understand fully the dynamic behaviors of near-extinction diffusion flames.

Appendix 1. Method for calculating the derivative of the inner-layer structure with
respect to reactant leakage

Results for �0 are needed in Equation (40) to identify the quasisteady extinction condition.
In principle, we may obtain �0 by solving the inner problem in (31) for various values of
�� and then differentiating numerically. However, this is quite inaccurate, and therefore the
alternative procedure described here is employed.

In order to calculate various derivatives of the inner-layer flame structure with respect to
��, Equation (31) is expanded to include a small perturbation of �� about a given value ��0 .
Since � and � are parametrically dependent on ��, letting ~� a small increment in ��, we
may write

�� = ��0 + ~�

�(�;��) = �(�;��0 ) +
@�

@��
(�;��0 )~�+ � � � = �(�;��0 ) + �(�;��0 )~�+ � � �

�(��) = �(��0 ) +
d�
d��

����
�
�

0

~�+ � � � = �0(1 +�0~�+ � � �)

9>>>>>>=
>>>>>>;
; (A.1)

where

� � @�

@��

����
�
�

0

;�0 � d log �

d��

����
�
�

0

;�0 � �(��0 ): (A.2)
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Substituting the above expansions in (31) and collecting the terms at order ~� alone, we find
the problem for determining � and �0 to be

d2�

d�2 = �0 exp[�(�+ �)][(2�� �2 + �2)� +�0(�2 � �2)]

d�
d�

! 0 as � ! �1

9>>>=
>>>;
: (A.3)

To Equation (A.3) must be appended a supplementary condition to assure that the matching
condition for the fuel leakage, �� = (�+ �)�1, is satisfied,

��0 + ~� = �(�;��0 ) + �~�+ � as � ! �1: (A.4)

Since ��0 = [�(��0 ) + �]�1, the applicable supplementary condition for (A.3) is then found
to be

�! 1 as � ! �1: (A.5)

Solution to (A.3) with the additional condition in (A.5) yields a unique function �, the
eigenvalue �0 and a constant value for �(1), which corresponds to r = d�+=d��. For
 = 0, it is found that r = 1 for all values of ��. The value of r decreases as  decreases and
approaches zero as  approaches negative unity. Corresponding numerical results for �0 are
shown in Figure 4 as a function of �� for various values of .

Appendix 2. Approximate inner solution for near-adiabatic case

If the ratio AF is large, then the flame is nearly adiabatic on the fuel side, i.e. the heat-loss
parameter  is close to negative unity. In this limit, the inner solution can be approximated
through an asymptotic approach. The procedure shown here follows a previous analysis by
Clavin and Liñán [14].

To proceed with the analysis, it is convenient to introduce new variables as

� = 2� � �� = 2� � a=m; ' = �� �; (A.6)

where an alternative heat-loss parameter m is defined as

m � (1� jj)=2 (A.7)

and the fuel-leakage parameter �� is rescaled according to �� = a=m with a being of order
unity. For small values ofm, we pose the problem of finding the reduced Damköhler number�
that corresponds to a given value of the rescaled fuel-leakage parameter a. Upon substitution
of the vew variables of (A.6) in (31), the inner equation becomes

d2'

d�2 = �
ae�a

4m
' exp[�('+m�)]

�
1 +

m

a
('+ �)

�
;

'1 ! 0; ('+ �)�1 ! 0:

(A.8)
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With the parameter m taken as the small expansion parameter, the solution is sought in the
form

' = '0 +m'1 + � � �

� = �
ae�a

4m
= �0(1 +md+ � � �)

9>=
>; ; (A.9)

where '0; '1 as well as �0 and d are assumed to be of order unity.
At the leading order, we find

d2'0

d�2 = �0'0 exp(�'0);

'0 ! 0 as � !1; '0 + � ! 0 as � ! �1:

(A.10)

The energy integral of the above equation results in �0 = 1=2, thereby providing the first
approximation to �,

� = 2ma�1 exp(a) = 2 exp(m��)�1=�� (A.11)

The equation for '1 of the expansion in (A.8) is

d2'1

d�2 = �0'0 exp(�'0)

�
'1

�
1
'0
� 1

�
+ d� � +

'0 + �

a

�
;

'1 ! 0 as � ! �1:

(A.12)

Multiplying the both sides of this equation by d'0=d�, we find that

d
d�

"
d'0

d�
d'1

d�
� d2'0

d�2 '1

#
= �0'0 exp(�'0)

d'0

d�

�
'1

�
1
'0
� 1

�
+ d� � +

'0 + �

a

�
;(A.13)

which can be integrated from �1 to 1 to yield

�d
2
� 1 + �

1� a

2a
= 0; (A.14)

where use has been made of the integral identities

Z
1

�1

�0'0 exp(�'0)
d'0

d�
d� = �1

2
;

Z
1

�1

�0'
2
0 exp(�'0)

d'0

d�
d� = �1

and the constant � is

� =

Z
1

�1

�0'0 exp(�'0)
d'0

d�
� d� =

Z
1

0

�
1 +

d'0

d�

�
d'0 = 1.3440

Therefore, the two-term approximation to � is found to be given by (42). This approximate
solution is shown in Figures 3 and 4 by the dotted lines, which reveal reasonable accuracies
in the limit of m� 1 and �� � 1.
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9. A. Liñán and F. A. Williams, Fundamental Aspects of Combustion. Oxford: Oxford University Press (1993)

144–146.
10. L. L. Kirkby and R. A. Schmitz, An analytical study of the stability of a laminar diffusion flame. Combust.

Flame 10 (1966) 205–220.
11. R. Chen, G. B. Mitchell and P. D. Ronney, Diffusive-thermal instability and flame extinction in nonpremixed

combustion. Proc. Twenty-Fourth Symp. (Intl) on Combustion. Pittsburgh (PA): The Combustion Institute
(1992) 213–221.

12. J. S. Kim, F. A. Williams and P. D. Ronney, Diffusional-thermal instability of diffusion flames. J. Fluid Mech.
327 (1996) 273–301.

13. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover (1965) 297–329.
14. P. Clavin and A. Liñán, Theory of gaseous combustion. In: M. G. Velarde (ed.), Nonequilibrium Cooperative

Phenomena in Physics and Related Fields. New York: Plenum Press (1984) 291–338.
15. G. Balakrishnan, C. Treviño and F. Mauss, the asymptotic structure of hydrogen air diffusion flames. Combust.

Flame 91 (1992) 246–256.
16. K. Seshadri and N. Peters, Asymptotic structure and extinction of methane-air diffusion flames. Combust.

Flame 73 (1988) 23–44.

engiab-1.tex; 17/06/1997; 10:11; v.6; p.18


